4D-fingerprint categorical QSAR models for skin sensitization based on the classification of local lymph node assay measures.

نویسندگان

  • Yi Li
  • Yufeng J Tseng
  • Dahua Pan
  • Jianzhong Liu
  • Petra S Kern
  • G Frank Gerberick
  • Anton J Hopfinger
چکیده

Currently, the only validated methods to identify skin sensitization effects are in vivo models, such as the local lymph node assay (LLNA) and guinea pig studies. There is a tremendous need, in particular due to novel legislation, to develop animal alternatives, for eaxample, quantitative structure-activity relationship (QSAR) models. Here, QSAR models for skin sensitization using LLNA data have been constructed. The descriptors used to generate these models are derived from the 4D-molecular similarity paradigm and are referred to as universal 4D-fingerprints. A training set of 132 structurally diverse compounds and a test set of 15 structurally diverse compounds were used in this study. The statistical methodologies used to build the models are logistic regression (LR) and partial least-square coupled logistic regression (PLS-LR), which prove to be effective tools for studying skin sensitization measures expressed in the two categorical terms of sensitizer and non-sensitizer. QSAR models with low values of the Hosmer-Lemeshow goodness-of-fit statistic, X(2)HL, are significant and predictive. For the training set, the cross-validated prediction accuracy of the logistic regression models ranges from 77.3% to 78.0%, whereas that of the PLS-logistic regression models ranges from 87.1% to 89.4%. For the test set, the prediction accuracy of logistic regression models ranges from 80.0% to 86.7%, whereas that of the PLS-logistic regression models ranges from 73.3% to 80.0%. The QSAR models are made up of 4D-fingerprints related to aromatic atoms, hydrogen bond acceptors, and negatively partially charged atoms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Categorical QSAR Models for skin sensitization based upon local lymph node assay classification measures part 2: 4D-fingerprint three-state and two-2-state logistic regression models.

Three and four state categorical quantitative structure-activity relationship (QSAR) models for skin sensitization have been constructed using data from the murine Local Lymph Node Assay studies. These are the same data we previously used to build two-state (sensitizer, nonsensitizer) QSAR models (Li et al., 2007, Chem. Res. Toxicol. 20, 114-128). 4D-fingerprint descriptors derived from the 4D-...

متن کامل

QSAR Study of Skin Sensitization Using Local Lymph Node Assay Data

Allergic Contact Dermatitis (ACD) is a common work-related skin disease that often develops as a result of repetitive skin exposures to a sensitizing chemical agent. A variety of experimental tests have been suggested to assess the skin sensitization potential. We applied a method of Quantitative Structure-Activity Relationship (QSAR) to relate measured and calculated physical-chemical properti...

متن کامل

QSAR models of human data can enrich or replace LLNA testing for human skin sensitization.

Skin sensitization is a major environmental and occupational health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. We have compiled, curated, analyzed, and compared the available human and LLNA data. Using these data, we have developed reliable computational models and applied them for virtual screening of chemical librarie...

متن کامل

Prediction of Skin Sensitization with a Particle Swarm Optimized Support Vector Machine

Skin sensitization is the most commonly reported occupational illness, causing much suffering to a wide range of people. Identification and labeling of environmental allergens is urgently required to protect people from skin sensitization. The guinea pig maximization test (GPMT) and murine local lymph node assay (LLNA) are the two most important in vivo models for identification of skin sensiti...

متن کامل

Prediction of skin sensitization potency using machine learning approaches.

The replacement of animal use in testing for regulatory classification of skin sensitizers is a priority for US federal agencies that use data from such testing. Machine learning models that classify substances as sensitizers or non-sensitizers without using animal data have been developed and evaluated. Because some regulatory agencies require that sensitizers be further classified into potenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical research in toxicology

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 2007